Spectral Synthesis in Segal Algebras on Hypergroups

نویسندگان

  • AJIT KAUR
  • AJAY KUMAR
چکیده

Warner (1966), Hewitt and Ross (1970), Yap (1970), and Yap (1971) extended the so-called Ditkin's condition for the group algebra L\G) of a locally compact abelian group G to the algebras L(G) Π L(G), dense subalgebras of L{G) which are essential Banach LHO-modules, LKG) Π L(G)(1 ^ p < co) and Segal algebras respectively. Chilana and Ross (1978) proved that the algebra L^K) satisfies a stronger form of Ditkin's condition at points of the center Z(K) of K, where K is a commutative locally compact hypergroup such that its dual K is also a hypergroup under point wise operations. Topological hypergroups have been defined and studied by Dunkl (1973), Spector (1973), and Jewett (1975) to begin with. In this paper we define Segal algebras on K and prove that they satisfy a stronger form of Ditkin's condition at the points of Z(K). Examples include the analogues of some Segal algebras on groups and their intersections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Exponential Polynomials on Commutative Hypergroups

Exponential monomials are the basic building bricks of spectral analysis and spectral synthesis on Abelian groups. Recently there have been some attempts to extend the most important spectral analysis and spectral synthesis results from groups to hypergroups. For this purpose it is necessary to introduce a reasonable concept of exponential monomials. In this work we reconsider this problem, and...

متن کامل

Point Derivations on the l-Algebra of Polynomial Hypergroups

Polynomial hypergroups are a very interesting class of hypergroups with a great variety of examples which are quite different from groups. So the L-algebras of hypergroups have properties very distinguished to the L-algebras of groups, in particular in the context of amenability and related conditions. Being amenable the L-algebra of an abelian group does not possess any non-zero bounded point ...

متن کامل

Amenability and weak amenability of l-algebras of polynomial hypergroups

We investigate amenability and weak amenability of the l1-algebra of polynomial hypergroups. We derive conditions for (weak) amenability adapted to polynomial hypergroups and show that these conditions are often not satisfied. However, for the hypergroup induced by Chebyshev polynomials of the first kind we prove amenability.

متن کامل

Characterizations of amenable hypergroups

Let $K$ be a locally compact hypergroup with left Haar measure and let $L^1(K)$ be the complex Lebesgue space associated with it. Let $L^infty(K)$ be the dual of $L^1(K)$. The purpose of this paper is to present some necessary and sufficient conditions for $L^infty(K)^*$ to have a topologically left invariant mean. Some characterizations of amenable hypergroups are given.

متن کامل

Linear Maps Preserving Invertibility or Spectral Radius on Some $C^{*}$-algebras

Let $A$ be a unital $C^{*}$-algebra which has a faithful state. If $varphi:Arightarrow A$ is a unital linear map which is bijective and invertibility preserving or surjective and spectral radius preserving, then $varphi$ is a Jordan isomorphism. Also, we discuss other types of linear preserver maps on $A$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004